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ABSTRACT 

A study on the inelastic responses of a simple two degrees of 
freedom eccentric structure is carried out to determine the influence of 
eccentricity and torsional to lateral frequency ratio on the ductility 
demand and edge displacement of the structure. The resisting elements 
are taken to be bilinear hysteretic and the El Centro 1940 and Taft 1952 
records are used as sources of excitation. It is found that the 
influence of eccentricity on ductility demand is larger than previously 
reported by other investigators. An approximate bound is proposed to 
relate the ductility demand to the excitation level for eccentric 
structures. 

INTRODUCTION  

It is well known that both translational and torsional motions are 
induced in asymmetrical structures when subjected to seismic ground 
motions. Most studies on the lateral-torsional response problem assumes 
the system remains in the elastic range [1,2]. Under strong shaking, it 
is likely that many of the resisting elements will be excited into the 
inelastic range and the nonlinear hysteretic effect from inelastic 
action will affect the lateral-torsional responses of the system. The 
study of inelastic lateral-torsional responses of eccentric structure 
has received much less attention. Kan and Chopra [31 has carried out a 
parametric study on the elastic and inelastic responses of a single mass 
monosymmetric system under horizontal earthquake (El Centro 1940) ground 
excitation. They found that after yielding the response is primarily in 
translation and the system behaves more like an inelastic single degree 
of freedom system. As a result, torsional coupling affects maximum 
deformation in the inelastic system to a lesser extent compared to cor-
responding linear elastic system. Irvine and Kountouris [4] studied the 
bilinear hysteretic response of a simple torsionally unbalanced building 
consisting of two identical frames supporting a diaphragm subjected to 
three recorded (El Centro 1940, Taft 1952, Pacoima Dam 1971) and one 
artificially generated ground motions. They found that the ductility 
demand on the worst loaded frame is rarely more than 30% greater than 
the ductility demand in a similar symmetric structure, and the peak 
ductility and the eccentricity of the structure are only weakly 
correlated. 

In the present investigation, a single mass model with three 
lateral resisting elements is used to study the torsional-lateral 
inelastic response of structures subjected to ground motion excitation. 
The model used here is statically indeterminate, and its torsional 
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stiffness is controlled by the spread of the resisting elements from the 
mass center. Therefore, the model used is more representative of 
buildings design in practice than that used by Irvine and Kountouris. 
The ductility demand and the edge displacement are two response 
parameters under study. It is shown that the torsional-lateral 
inelastic response depend on the earthquake record used in a complex 
manner. Also, the effect of eccentricity has a more pronounced effect 
on ductility demand and overall behaviour than as described by Irvine 
and Kountouris. 

DESCRIPTION OF MODEL  

The structural model used consists of a rigid rectangular deck of 
mass M and dimensions B by D, supported by three frames A, B and C in 
the direction of ground excitation. Frame B is located at the center 
and the other two frames are located at distance x on either side of the 
center frame as shown in Fig. (1). For simplicity, the contribution of 
the frames normal to the direction of ground motion to torsional 
resistance is ignored. The force-displacement relationship for each 
frame in the y direction is assumed to be bilinear. The slope of the 
yielding branch is taken as 3% of the initial elastic slope. The 
elastic slopes of the frames may be different, and their relative values 
will be adjusted to give rise to different initial eccentricity values 
to the system. Each frame, however, is assumed to have the same yield 
displacement U Therefore, a stiffer frame also implies a frame of 
higher yield se).ength. 

One important parameter on the elastic response of torsionally 
coupled system is the uncoupled torsional frequency to lateral frequency 
ratio Q. The uncoupled lateral period is taken to be 1 second in the 
current study and the uncoupled torsional period, and hence 2 is varied 
by changing the frame spacing x. 

The system described is basically a two degrees of freedom system. 
The motions of the system can then be described by a translation u (t) 
of the center of mass and a rotation up(t) about the center of mgss. 
Although the frames are bilinear, the force-displacement relationship at 
the center of mass is not straightly bilinear since not all the frames 
will start yielding at the same translation u (t). The force- 
displacement characteristics at the mass center for; torsionally stiff 
(0 . 1.4) and a torsionally weak system (0 r 0.8) are shown in Fig. 2. 

EQUATIONS OF MOTION  

The equations of motion for the system subjected to horizontal 
ground acceleration u (t) can be written as 
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{F} . the stiffness—related resisting force vector; in incremental 

form, it is given by 
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(i = A, B and C) 

where 1(4  is the instantaneous stiffness of frame i as determined from 
the load—deformation relationship. 

The equations of motion can be put into a nondimensional form as 
follows 
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where 

z(t) = u (t)/U Y  

•(t) = ue(t)D/(2 U ) 

w = uncoupled lateral frequency = (K
o
/M)1/2  

K = initial lateral stiffness of the system 

r = r/D 

and r is a non—dimensional resisting force vector. In incremental form 
for numerical integration, it can be written as 

K. = K./K 
1 1 0 

and 

xi  = xi/D. 

For eq. (2), a viscous damping term is added to account for energy 
dissipation of the system. 2% critically damped is the damping value 
taken in this study. 

The equations of motion are integrated numerically using step—by—
step integration, assuming linear variation of acceleration over a short 
time interval At. To satisfy the stability condition of the numerical 
method, At is taken as 0.02 seconds. In the time increments during 
which stiffness of any frame changes due to yielding or unloading from 
yielding, there will be an overshoot of response away from the pre—
scribed load deformation relation, resulting in unbalanced forces during 



that step. The resulting unbalanced forces are treated using the 
modified Newton—Raphson iteration method to reduce them to an acceptably 
small value before the response of the system for the next time step is 
taken. 

PARAMETRIC STUDIES  

A parametric study is carried out on the response of the system. 
The parameters included in the study are: 

(i) The eccentricity ratio e/D. The eccentricity ratio takes values of 
0, 0.05, 0.15 and 0.25. e/D = 0 denotes the case of a symmetrical 
structure and forms the basis to evaluate the effect of asymmetry. The 
other three values represent small, medium and large eccentricity 
systems respectively. Systems with different values of e/D are obtained 
by proper choice of the initial stiffness distribution in the resisting 
elements. 

(ii) Uncoupled torsional to lateral frequency ratio n. This ratio 
takes on values equal to 0.8, 1.0 and 1.4. These values of frequency 
ratio are representative of buildings with resisting elements located 
close to the core, uniformly distributed in plan, and located at the 
perimeter of the building respectively. In the model studied, changing 
of n is obtained by varying the distance between the frames x. The 
values of x used were 0.37, 0.40 and 0.50 respectively for the frequency 
ratio used. 

(iii) Ground Motion Excitation U (t). Two ground motion records were 
uses. They were the El Centro 81940 N—S component and the Taft 1952 
S69 E component records. For each record, the ground motions is nor—
malized with respect to the 2% damped elastic spectral acceleration 
value S at 1 second period. Writing 9 (t) = S t (t), the excitation 
term inaeq. (2) can be written as a w-g5 (t) wiTer a r M S /Fy. a is 
then taken as the excitation level pargme&r. When a equals unity, it 
represents the excitation level as such that the system with zero 
eccentricity just reaches yield. For systems with other values of 
eccentricity, the amount of yielding at some of the resisting elements 
is minimal. Hence, responses associated with an can be considered as 
elastic response values. The parameter a is varied from 1 to 8 in this 
study. High values of a indicate that the system is being excited well 
into the inelastic range. 

DISCUSSION OF RESULTS  

There are two response parameters that are of special interests in 
design. They are the ductility demand in the resisting elements and the 
edge displacements of the structure. The former parameter is useful in 
the design and detailing of the resisting elements, and the latter is a 
good measure of the nonstructural damage potential. In this paper, the 
ductility demand is presented by the peak ductility ratio u at the 
element furthest away from the center of stiffness. It is defined as 
the ratio of the absolute maximum displacement to the yield displacement 
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of that element. The edge displacement considered is the displacement 
of the edge of the building furthest away from the center of stiffness. 
Information on the edge displacement is normalized with respect to the 
same edge displacement if the system were symmetric. 

Shown in Figures 3 and 4 are the results of the ductility ratio y 
for element C against the excitation intensity parameter a under El 
Centro 1940 and Taft 1952 ground motion excitations. The system 
parameters are the normalized eccentricity e/D and the torsional to 
lateral frequency ratio Q. In addition to denote the level of 
excitation, the parameter a . MS /F can be considered as the ratio of 
the elastic force on the systemP to the yield strength of the system, 
assuming the system is symmetrical. Therefore, it may be considered as 
the inverse of the reduction factor R. For a S.D.F. elastoplastic 
system, the reduction factor R is related to the ductility factor u by 
the relation R = 1/u if the equal maximum displacement criteria is used; 
or R = 1//(2p-1) if the equal strain energy criteria is used [6]. 
Although the ductility ratio y plotted in Figures 3 and 4 are ductility 
demand for one resisting element in a two degrees of freedom inelastic 
system, the curves a = y and a = ✓(2y-1) would still be useful 
guidelines to provide a basis to interpret the results obtained. 
Therefore, they are plotted on the figures also. 

By comparing the results based on the El Centro record versus those 
based on the Taft record, it is seen that the ductility demand is 
greatly influenced by the ground motions used. Excitation by the El 
Centro record leads to a smaller ductility demand than using the Taft 
record, and the curve arm gives a representative relation of the 
ductility demand curves for El Centro excitation. Using the Taft 
record, the ductility demand curves are bounded approximately by the 
curve a=y and a = ✓(2y-1). Obviously, the frequency content in the 
ground motion used has a significant effect, although such effect is not 
easy to quantify. Blume [7] has shown that the ductility demands for a 
number of single degrees of freedom inelastic system under El Centro 
record excitation are bounded by the same curves a = y and a = ✓(2y-1). 
In this respect, the ductility demand of frame C in our model is similar 
to many of the single degree of freedom inelastic system studied. 

In general, systems with higher initial eccentricity lead to higher 
ductility demand. In the cases where the Taft record is used, it is not 
uncommon to have ductility demand of a highly eccentric system being 
more than twice that of a symmetrical system. In this aspect, our 
finding differs from the observations made by Irvine and Kountouris [4]. 
One possible explanation is that a different structural model used in 
the current study. 

The uncoupled torsional to lateral frequency ratio has only minor 
effect on the ductility demand of frame C. This observation can be 
model specific rather than generic in nature. In the structural model 
considered, the increase in torsional stiffness is obtained by locating 
the frames A and C further away from the center of mass. Therefore, 
although a torsionally stiffer system (0 = 1.4) may result in smaller 
value of rotational motion, the resulting translational motion in frame 
C is not reduced proportionally since in such a configuration, the lever 
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arm between frame C and the center of stiffness is increased. 

Elastic study of torsionally unbalanced system indicates that when 
the torsional and lateral frequencies are the same (0 = 1.0), and 
particularly for systems with small eccentricity, substantial increase 
in torsional response is expected [11. However, the case when n r 1.0 
does not lead to extra large value of ductility demand in the current 
inelastic response study. This can be due to the fact that due to 
yielding of the system, the "effective" frequencies of the system are 
detuned even the initial uncoupled frequencies are equal. At the 
instant when the peak ductility demand is reached, the system has gone 
well into the inelastic range and the amplification effect due to 
coincidence of initial torsional and lateral frequency cannot be felt at 
such state. 

The insensitivity of ductility demand in frame C under El Centro 
excitation may lead to the wrong conclusion that the overall behaviour 
of the structure is not much affected by change of eccentricity and 
torsional to lateral frequency ratio. Shown in Fig. 5 are sketches of 
the displacements and rotation of the structure at the point the peak 
ductility demand of frame C is reached, under El Centro ground motion 
excitation. For a given value of 0, it is seen that a system with 
higher eccentricity leads to a larger rotational motion. However, it is 
compensated with a smaller lateral displacement at the mass center. As 
a result, the ductility demand on frame C is relatively insensitive to 
the change of eccentricity, as presented by the current study and also 
pointed out by Kan and Chopra. The open circle denotes the element is 
on the yielding branch and the solid circle denotes the element is on 
the unloading branch of the element force—displacement curve. It can be 
seen at the moment peak ductility demand is reached, frame C is on the 
yielding branch while frames A and B are on the unloading branches of 
their respective curves. This indicates substantial torsional motions 
is involved at that instant, and does not agree with the observation by 
Kan and Chopra that when such a system gets into the inelastic range, it 
behaves more and more like an inelastic single—degree—of—freedom system, 
responding primarily in translation. 

Frame C will be the frame which has the greatest ductility demand 
if the translational and torsional motion are in phase at the instant of 
maximum excursion. While this is generally true, there are occasions 
when the translational and torsional motions become out of phase at the 
instant of maximum excursion, thus making frame A (the element closer to 
the stiffness center than frame C) subjected to higher ductility demand. 
An example of such response is shown in Fig. 5. Currently, there is no 
clear cut criteria to predict such a condition will occur. Further 
study on this issue is useful since very little seismic code provisions 
are directed to the design of elements on the same side as the stiffness 
center (measured relative to the mass center). 

The positive edge displacement response is represented by the edge 
displacement ratio A . It is defined as the ratio of the positive edge 
displacement for systems with eccentricities to the edge displacement of 
an otherwise similar symmetric system. In other words, it is a measure 
of the effect of eccentricity on edge displacement response. Shown in 
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Figures 6 and 7 are the edge displacement ratio as a function of 
excitation level a for two ground motion records. In general, larger 
eccentricity tends to lead to larger edge displacement ratio; however, 
the increase is not systematic and difficult to quantify. Also. A can 
be less than unity, indicating the edge displacement of an eccentric 
system is not necessarily larger than a symmetrical one. The most 
important variable that affects the edge displacement ratio appears to 
be the ground motion used. The maximum edge displacement ratio is of 
the order of two for the El Centro ground record while the maximum value 
is over three when the Taft record was used. It is of interest to note 
[1] that such a system under a flat acceleration spectrum input and 
assuming elastic response, the edge displacement ratio is of the order 
of two, similar to the inelastic edge displacement ratio produced by El 
Centro excitation over a range of eccentricity values. 

CONCLUSION  

Although only the results for the case of structural system with 
uncoupled lateral period of 1 second are presented, the observations 
listed below apply to systems with shorter (0.5 second) and longer (2.0 
second) lateral periods. Details of the study on these system can be 
found in ref. [5]. 

One can make the following observations, based on the results 
presented: (1) The ductility ratio 4 increases with excitation level a. 
The curve a . /(2p-1) appears to be a good upper bound for the ductility 
demand for any given excitation level a. (2) Eccentricity in the system 
has a larger effect on the ductility demand than reported earlier [4]. 
An increase of over 100% in ductility demand is not unusual for systems 
with large eccentricity as compared to systems with small eccentricity. 
(3) The coincidence of uncoupled torsional and lateral frequencies does 
not lead to additional peak inelastic responses, although such condition 
leads to larger elastic response in general. (4) Sizeable rotational 
motion is involved at the instant where peak ductility demand is 
reached. Therefore, an eccentric structure does not respond primarily 
in translation when it is excited well into the inelastic range as 
reported by early investigators. (5) Eccentricity has the effect of 
increasing the edge displacement of the structure by a factor up to 
three when compared with that of a symmetrical system. Increase in 
torsional stiffness of the structure tends to reduce this factor as 
expected. (6) The behaviour, and hence the different peak response 
parameters are strongly dependent on the ground motions used. Attempts 
have been made in the current study to normalize the excitation level 
parameter with the acceleration spectral values at different systems' 
periods such as the coupled first or second periods instead of the 
uncoupled lateral periods in order to reduce the dependence of results 
on different ground motions. The failure of such attempts to reduce the 
dispersion points to the necessity of additional parameters to quantify 
the influence of different ground motions on the inelastic response. 
Until the influence of ground motions on the response parameters is 
better understood, all conclusions drawn based on studies using a 
limited number of ground motion records as excitation must be viewed as 
tentative. 
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